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Abstract

In the past 12 months, we have been focusing our effort on three projects: the first one is about numerical
solutions of optimal control problems using the analysis of variance (ANOVA)analysis; the second one is
error analysis for stochastic partial differential equations with white noise forcing terms and the third one is
about efficient Monte Carlo methods using sensitivity derivatives. Numerical approximation for stochastic
partial differential equations is the common theme of the three projects.
In the first project, The impact of parameter dependent boundary conditions on the solutions of a class of
nonlinear partial differential equations (PDEs) is considered. The concepts of effective dimensions are used
to determine the accuracy of the ANOVA expansions. Demonstrations are given to show that whenever
truncated ANOVA expansions of functionals provide accurate approximations, optimizers found through a
simple surrogate optimization strategy are also relatively accurate. Although most of the results are pre-
sented and discussed in the context of surrogate optimization problems, they also apply to other settings such
as stochastic ensemble methods and reduced-order modeling for nonlinear PDEs. In the second project, we
study finite element numerical methods for class of nonlinear stochastic elliptic partial differential equations
as well as stochastic Stokes equation with white noise forcing terms. Error estimates are established, the
significance of these error estimates is that they provide a practical guidance to the Monte Carlo simulation.
Numerical examples are also presented to examine our theoretical results. In the third project, we continue
our research effort on efficient Monte Carlo simulation for stochastic partial differential equations using
sensitivity derivatives. We further verified the efficiency of our algorithm by combing sensitivity derivative
Monte Carlo method with the quasi-Monte Carlo simulation.

Project I: ANOVA expansions and surrogate optimization problems
Consider a general optimal control problem.

minimize J (6))

functional
over cV A C Rd

admissibility set
subject to F(u; 6) = 0

nonlinear PDE

When the number of parameters is large and the PDEs as constraints are complicated, this is a large
scale computational problem. To reduce the complexity of computation, we proposal to find the numerical

solution of the optimal control using the surrogate optimization method. In the surrogate optimization, We
first choose N points {6(J)}N=I belonging to admissible set A. Then we solve the N PDE problems

F(,(J);6 (3) ) =0 j=l1,... ,N

and calculate the N values j = J(u(j )) j = 1,... ,N of the const function. From the set {(i), u(J))} 1 ,

we build a surrogate function Jur (6) defined over the parameter subset A. The approximation solution of
the optimal control problem is then obtained by solving the following surrogate optimization problem.

mimn Jr (6).
5EA
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In this project, we will choose J,, as polynomials of the parameters and we will use the ANOVA expansion
to determine

" the parameters that can be ignored from the surrogate optimization, and
" the degree of the surrogate polynomial function.

Here is a brief description of ANOVA expansion. Let P = [1,... ,p}. For any subset of (ordered) coordinate
indices T C P, let TI denote the cardinality of T, 6T E RITI denote the ITI-vector containing the components

of the vector 5 E RP indexed by T, and A I
I denote the ITI-dimensional unit hypercube which is the

projection of the p-dimensional finit hypercube A P onto the coordinates indexed by T. Then Any function
J(d) C L'(AP) may be written as the ANOVA expansion

(6) = J0 + JT (dT),
TCP

where the terms in the expansion are determined recursively by

JTPYT) = JAI\AI7,' J (5)ddP\T - TZ JV&v (6 JO
VCT

starting with

J, = dJ()d&.
dAp

The following are two of the most important properties for ANOVA expansion.

• The ANOVA terms are mutually orthogonal, i.e.,

A JT(dT)JV(dV) dS = 0

whenever one or more of the indices in T and V differ.
" Let T be a subset of P and or2(J) denote the variance of a function J then,

o2(7 ) 2 2 4(J), where cr(j) = L J )) 2 .(= wh r=' (JT (r y)) d,.

ITI>O

We will use the concept of effective dimension ([]) to determine the number of parameters and degree of
polynomials for the surrogate function.

" The (effective) 9uperposition dimension of J(5) is the smallest integer P, such that

E 7T(j) >_q,()
O<ITI<p. )

" The (effective) truncation dimension of J(d) is the smallest integer pt such that

2 a(J) - qa2(j).

TC{1,.,pt}

Here p is the proportionality close to 1.

If pt is the truncation dimension, then only the first Pt parameters are needed for the surrogate function. On
the other hand, if p, is the superposition dimension, then we only need to use polynomials with degrees no
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large than p,. In [], we prove the approximation property of ANOVA expansion under small perturbation
assumption.

To verify our theoretical analysis, we consider the following optimal control problem. The cost functional
takes the form

J (u) = f w(u)dfD + 711)
2

where we choose

w(u) = (u - i)2 or e(u - ) or /T- u-

The state equation is the following nonlinear elliptic partial differential equation with mixed boundary
conditions.

-Au + f(u) = 0 in Q

u = 0 on F 0
M

U = Z ai0i onFi

au N

Tn= T cto on 1 2 ,
i=1

We choose q = 0.99 in the superposition dimension and derive, after computation that,

1 if w(u) = e(u - ) and f(u) = U2 or xu

3 ifw(u)= 1u-i and f(u)=eu or /ul

1 4 if w(u) = u-il and f(u) = u 2

2 otherwise

The above results indicate that the effective dimensions depend on the smoothness of the cost functionals.
In all cases we use quadratic polynomials as surrogate functions and the errors for optimal controls are listed
in Table 1. Here MC is the Monte Carlo sampling, LHS the Latin hypercube sampling and CVT Centroid
Voronoi tessellation sampling. Our numerical results confirm that When the effective dimensions are two or
less, the quadratic surrogate optimization provides accurate numerical solution for the optimal controls.

Talbe 1: Errors of optimal controls with surrogate optimizations

w(u) = (u- )2 w(u) = Iu - jJ1/2

sampling f(u) f(u)

method u2  eu I J1 2  U2  eu Ul11/ 2

MC 0.036 0.018 0.086 0.556 0.566 0.574
LHS 0.021 0.012 0.035 0.378 0.427 0.380
CVT 0.067 0.026 0.069 0.436 0.433 0.436

Project II: Finite element approximation for Stochastic Stokes equation
In this project, we consider the stochastic Stokes equation with a white noise forcing term which describes
the motion of an incompressible viscous fluid.

-vAu + Vp = f + W, in Q,
divu = 0, in Q, (0.1)

u = 0, on 09Q
3



where Q is a bounded convex domain in R 2 with piecewise continuous boundary, u: -* R 2 is the velocity

of the fluid flow, p is the pressure, f E L2 (fQ) and W - (Wl, W 2 ) is the white noise such that

E(WJ(x)Wj(x')) = 6(x - z'), x, x' E Q, j = 1,2

where 6 denotes the usual Delta 6 function and E the expectation. Assume that G and D are the Green's
functions for the Stokes equation corresponding to u and p, respectively. We define the weak solution of
(0.1) as follows.

U(X) G(x, y)f(y)dy + j G(x, y)dW(y) (0.2)

and

p(x) = V/f D(x, y)f(y)dy + V in D(x,y)dW(y) (0.3)

where the stochastic integral is defined in Ito's sense. The noise term occurs, for example, when the fluid's
temperature affects the flow of the fluid but is omitted in the equation because of insufficient knowledge of
the boundary data for the temperature.

We define an approximate solution of (0.1) by discretizing the white noise W. First we introduce a dis-

cretization for the white noise. Let {Th} be a family of triangulations of T (see [?] for the requirements
on {Th}), where h E (0, 1) is the reshsize. We assume the family is quasiuniform, i.e., there exist positive
constants p, and P2 such that

pl h<R l r <R i r < P 2h, VTETh, V0<h< 1, (0.4)

where R ir and Rcir are the inradius and the circumradius of T. Write

T =-1 j 1 dWi (x ) j = 1, 2

for each triangle T E Th, where ITI denotes the area of T. It is well-known that {F}TET, is a family of
independent identically distributed normal random variables with mean 0 and variance 1 (see [?]). Then the

piecewise constant approximation to Wj (x) is given by

Whj = ITI-2}TXT(X) (0.5)
TCTh

We consider the numerical approximations of (??) using the finite element method. Denote Pk = Pk(x, y)

as the set of polynomials of degree k. Let X := (HI(0) 2 and Q := L2 ( ) = {q E L 2 (t), f q(x)dx = 01.
We approximate the velocity on each element T in Th by a polynomial of

P(T) = {P1 e span{A 1 , A2 , A2 }} 2  (0.6)

where Aj are barycentric coordinates defined as

Aj E P1 Aj(ai) = 
6
ij, i,j = 1,2

where ai are the vertices of T. Then we choose the following finite element spaces.

Xh ={v e CO() 2 ; VIT c P(T), V T E T, vlan = 01, (0.7)

Qh = {q E C°(S-1) 2; q1T e PI(T), V T E Th}. (0.8)
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The finite element solution is to solve the variational equation in the finite element space. Assume that Uh
and p, are the finite element approximations for u and p, respectively. We have the following error estimates.

Theorem 1 There exists a constant C such that

E(Iu - Uhl
2

) C1 lnh h, (0.9)

E(Ilp Phll2-l) < C1 In h1h 2 .

The significance of the errors estimates is that they provide practical guidance for the choice of the number
of samples in the Monte Carlo simulation. We have conducted a number of Monte Carlo simulations using
our algorithm. Figure 1 and Figure 2 show the expectation and variance of the velocity, respectively.

Figure 1 the expectation and variance of velocity

Conclusion and future research
We posed the problem of optimal control and design optimization using the statistical tool ANOVA. Our
numerical experiments indicate that ANOVA expansion combined with concept of effective dimension is
effective in choosing the surrogate functions for optimal control problems. We have also studied numerical
solutions stochastic Stokes equations with white noise forcing terms. Our error analysis shows that the finite
element method for stochastic Stokes equations has one order lower convergence rate than deterministic
problems. Future research includes ANOVA analysis for optimal control problems with large number of
parameters, numerical solutions for time dependent partial differential equations with multiplicative noises.
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